Published in

Wiley, Annals of the New York Academy of Sciences, 1(1266), p. 55-62, 2012

DOI: 10.1111/j.1749-6632.2012.06564.x

Links

Tools

Export citation

Search in Google Scholar

Hematopoietic stem cells are regulated by Cripto, as an intermediary of HIF-1α in the hypoxic bone marrow niche.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cripto has been known as an embryonic stem (ES)- or tumor-related soluble/cell membrane protein. In this study, we demonstrated that Cripto has a role as an important regulatory factor for hematopoietic stem cells (HSCs). Recombinant Cripto sustained the reconstitution ability of HSCs in vitro. Flow cytometry analysis uncovered that GRP78, one of the candidate receptors for Cripto, was expressed on a subset of HSCs and could distinguish dormant/myeloid-biased HSCs and active/lymphoid-biased HSCs. Cripto is expressed in hypoxic endosteal niche cells where GRP78(+) HSCs mainly reside. Proteomics analysis revealed that Cripto-GRP78 binding stimulates glycolytic metabolism-related proteins and results in lower mitochondrial potential in HSCs. Furthermore, conditional knockout mice for HIF-1α, a master regulator of hypoxic responses, showed reduced Cripto expression and decreased GRP78(+) HSCs in the endosteal niche area. Thus, Cripto-GRP78 is a novel HSC regulatory signal mainly working in the hypoxic niche.