Published in

nano Online

DOI: 10.1515/nano.11671_2015.320

Links

Tools

Export citation

Search in Google Scholar

Uniformly Nanopatterned Graphene Field-Effect Transistors with Enhanced Properties

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract We have successfully fabricated and characterized highly uniform nanopatterned graphene (NPG). Thin anodized aluminum oxide nanomask was prepared by facile self-assembly technique without using polymer buffer layer, which was utilized as a direct-contact template for oxygen plasma etch to produce near-periodic, small-neck-width NPG. The NPG exhibits a homogeneous mesh structure with an average neck width as small as ~11 nm. The highly uniform 11-nm neck width creates a quantum confinement in NPG, which has led to a record bandgap opening of ~200 meV in graphene for the given level of neck width. Electronic characterization of single-layer NPG field-effect transistors (FETs) was performed, which demonstrated a high on-off switching ratio. We found that the NPG allows for experimental confirmation of the relationship between electrical conductance and bandgap. This work also demonstrates that our direct-contact, self-assembled mask lithography is a pathway for low-cost, high-throughput, large-scale nanomanufacturing of graphene nanodevices.