Published in

American Physical Society, Physical review B, 8(90)

DOI: 10.1103/physrevb.90.085303

Links

Tools

Export citation

Search in Google Scholar

Exciton spin noise in quantum wells

Journal article published in 2014 by D. S. Smirnov, M. M. Glazov ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A theory of spin fluctuations of excitons in quantum wells in the presence of non-resonant excitation has been developed. Both bright and dark excitonic states have been taken into account. The effect of a magnetic field applied in a quantum well plane has been analyzed in detail. We demonstrate that in relatively small fields the spin noise spectrum consists of a single peak centered at a zero frequency while an increase of magnetic field results in the formation of the second peak in the spectrum owing to an interplay of the Larmor effect of the magnetic field and the exchange interaction between electrons and holes forming excitons. Experimental possibilities to observe the exciton spin noise are discussed, particularly, by means of ultrafast spin noise spectroscopy. We show that the fluctuation spectra contain, in addition to individual contributions of electrons and holes, an information about correlation of their spins. ; Comment: 9 pages, 4 figures, Sec. IIB revised, Appendix added