Published in

Elsevier, Biochemical and Biophysical Research Communications, 4(482), p. 1252-1258

DOI: 10.1016/j.bbrc.2016.12.024

Links

Tools

Export citation

Search in Google Scholar

Transcriptional response to mitochondrial protease IMMP2L knockdown in human primary astrocytes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

IMMP2L encodes the inner membrane peptidase subunit 2, a mitochondrial protease involved in cleaving the space-sorting signals of mitochondrial membrane proteins. IMMP2L has been implicated in Tourette syndrome, but how its dysfunction contributes to the neurodevelopmental phenotype remains unclear. Here we show that IMMP2L transcription requires Topoisomerase I in human primary astrocytes, and characterize the downstream effects of IMMP2L knockdown on gene expression. We demonstrate that IMMP2L knockdown leads to dysregulation of genes involved in central nervous system development. We also find that the transcriptional response to IMMP2L knockdown partially overlaps the one induced by mitochondrial complex III inhibition. Overall, these data bring further insight into the molecular consequences of IMMP2L dysfunction in the brain.