Published in

2016 IEEE Biomedical Circuits and Systems Conference (BioCAS)

DOI: 10.1109/biocas.2016.7833804

Links

Tools

Export citation

Search in Google Scholar

Application of compressed sensing to ECG signals: Decoder-side benefits of the rakeness approach

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Compressed sensing has recently been actively investigated as a mean of lowering the power consumption of sensing nodes in biomedical signal devices due to its capability to reduce the amount of data to be transmitted for the correct reconstruction of the acquired waveforms. The rakeness-based design of compressed sensing stages exploits the uneven distribution of energy in the sensed signal and has proved to be extremely effective in maximizing the energy savings. Yet, many bodyarea sensor network architectures include intermediate gateway nodes that receive and reconstruct signals to provide local services before relaying data to a remote server. In this case, the decoderside power consumption is also an issue. In this paper, with particular reference to ECG signals, we show that rakenessbased design is also capable to reduce resources required at the decoder side for reconstruction. This happens across a variety of reconstruction algorithms that see their running time substantially reduced. Actual savings are then experimentally quantified by measuring the energy requirements of one of the algorithms on a common mobile computing platform.