Published in

Elsevier, Journal of Magnetic Resonance, 1(193), p. 63-67

DOI: 10.1016/j.jmr.2008.04.019

Links

Tools

Export citation

Search in Google Scholar

Natural Abundance 17O NMR Spectroscopy of Rat Brain In Vivo

Journal article published in 2008 by Robin A. de Graaf, Peter B. Brown, Douglas L. Rothman, Kevin L. Behar ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Oxygen is an abundant element that is present in almost all biologically relevant molecules. NMR observation of oxygen has been relatively limited since the NMR-active isotope, oxygen-17, is only present at a 0.037% natural abundance. Furthermore, as a spin 5/2 nucleus oxygen-17 has a moderately strong quadrupole moment which leads to fairly broad resonances (T(2)=1-4 ms). However, the similarly short T(1) relaxation constants allow substantial signal averaging, whereas the large chemical shift range (>300 ppm) improves the spectral resolution of (17)O NMR. Here it is shown that high-quality, natural abundance (17)O NMR spectra can be obtained from rat brain in vivo at 11.74 T. The chemical shifts and line widths of more than 20 oxygen-containing metabolites are established and the sensitivity and potential for (17)O-enriched NMR studies are estimated.