Published in

American Chemical Society, Journal of Physical Chemistry C, 23(120), p. 12810-12818, 2016

DOI: 10.1021/acs.jpcc.6b01465

Links

Tools

Export citation

Search in Google Scholar

Tuning the Composition of Alloy Nanoparticles Through Laser Mixing: The Role of Surface Plasmon Resonance

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work we report a technique for the preparation of AuxNi1-x alloy nanoparticles based on pulsed laser irradiation in liquid of Au and Ni@NiO colloidal mixtures. The structural and compositional characterization of the obtained materials, performed through X-ray diffraction and transmission electron microscopy coupled with energy dispersive X-ray spectroscopy, has shown a correlation between the final alloy composition and the different Au to Ni@NiO ratio in the irradiated mixture. With the support of theoretical calculations, we propose as possible mechanism for the formation of the alloy structures a temperature increase, enhanced by the strong absorption of gold surface plasmon resonance at resonant wavelength, and a subsequent melting of the structures. Optical characterization through UV-vis spectroscopy and magnetic characterization through SQUID magnetometry confirm a coexistence of the plasmonic and magnetic behaviors in the hybrid systems. In view of such results, AuxNi1-x alloy nanoparticles could be a promising base material for devices requiring both plasmonic and magnetic properties.