Published in

Royal Society of Chemistry, Catalysis Science & Technology, 4(7), p. 988-999, 2017

DOI: 10.1039/c7cy00018a

Links

Tools

Export citation

Search in Google Scholar

On the Mn promoted synthesis of higher alcohols over Cu derived ternary catalysts

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This work provides insight into the promotional effect of Mn on the synthesis of higher alcohols over Cu-based ternary catalysts through XPS and in situ DRIFTS and powder XRD. These revealed that the surface of K-CuZnAl, an active catalyst for CO hydrogenation to methanol, possesses Cu+ sites able to adsorb CO associatively and Cu0 sites for H2 dissociation. Here we show that exchanging Zn with Mn induces a strong interaction between Cu and Mn that decreases the overall copper surface area and increases the Cu+/Cu0 ratio. In situ DRIFTS showed that electronic modification of Cu+ sites by proximate Mn favors dissociative CO chemisorption, resulting in the formation of C and O adspecies that are precursors to higher alcohol formation. The decrease in metallic copper limits available sites for H2 dissociation, and hence retards the hydrogenation of oxygen-containing intermediates, thereby further promoting carbon-chain growth. Mn also increases the dispersion of K promoter over the catalyst surface, providing abundant basic sites for aldol-type condensation reactions to branched oxygenates.