Published in

American Astronomical Society, Astrophysical Journal, 1(834), p. 82, 2017

DOI: 10.3847/1538-4357/834/1/82

Links

Tools

Export citation

Search in Google Scholar

OGLE-2015-BLG-0196: Ground-based Gravitational Microlens Parallax Confirmed by Space-based Observation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this paper, we present an analysis of the binary gravitational microlensing event OGLE-2015-BLG-0196. The event lasted for almost a year, and the light curve exhibited significant deviations from the lensing model based on the rectilinear lens-source relative motion, enabling us to measure the microlens parallax. The ground-based microlens parallax is confirmed by the data obtained from space-based microlens observations using the Spitzer telescope. By additionally measuring the angular Einstein radius from the analysis of the resolved caustic crossing, the physical parameters of the lens are determined up to the twofold degeneracy, u_0 0, solutions caused by the well-known "ecliptic" degeneracy. It is found that the binary lens is composed of two M dwarf stars with similar masses, M_1 = 0.38 ± 0.04 M_⊙ (0.50 ± 0.05 M_⊙) and M_2 = 0.38 ± 0.04 M_⊙ (0.55 ± 0.06 M_⊙), and the distance to the lens is D_L = 2.77 ± 0.23 kpc (3.30 ± 0.29 kpc). Here the physical parameters outside and inside the parentheses are for the u_0 0 solutions, respectively.