Published in

American Chemical Society, ACS Central Science, 7(2), p. 445-455

DOI: 10.1021/acscentsci.6b00053

Links

Tools

Export citation

Search in Google Scholar

Deciphering the Interplay among Multisite Phosphorylation, Interaction Dynamics, and Conformational Transitions in a Tripartite Protein System

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Multisite phosphorylation is a common pathway to regulate protein function, activity, and interaction pattern in vivo, but routine biochemical analysis is often insufficient to identify the number and order of individual phosphorylation reactions and their mechanistic impact on the protein behavior. Here, we integrate complementary mass spectrometry (MS)-based approaches to characterize a multisite phosphorylation-regulated protein system comprising Polo-like kinase 1 (Plk1) and its coactivators Aurora kinase A (Aur-A) and Bora, the interplay of which is essential for mitotic entry after DNA damage-induced cell cycle arrest. Native MS and cross-linking-MS revealed that Aur-A/Bora-mediated Plk1 activation is accompanied by the formation of Aur-A/Bora and Plk1/Bora heterodimers. We found that the Aur-A/Bora interaction is independent of the Bora phosphorylation state, whereas the Plk1/Bora interaction is dependent on extensive Bora multisite phosphorylation. Bottom-up and top-down proteomics analyses showed that Bora multisite phosphorylation proceeds via a well-ordered sequence of site-specific phosphorylation reactions, whereby we could reveal the involvement of up to 16 phosphorylated Bora residues. Ion mobility spectrometry-MS demonstrated that this multisite phosphorylation primes a substantial structural rearrangement of Bora, explaining the interdependence between extensive Bora multisite phosphorylation and Plk1/Bora complex formation. These results represent a first benchmark of our multipronged MS strategy, highlighting its potential to elucidate the mechanistic and structural implications of multisite protein phosphorylation.