Published in

Elsevier, Future Generation Computer Systems, (78), p. 987-994, 2018

DOI: 10.1016/j.future.2017.01.019

Links

Tools

Export citation

Search in Google Scholar

Detecting android malicious apps and categorizing benign apps with ensemble of classifiers

Journal article published in 2017 by Wei Wang, Yuanyuan Li, Xing Wang, Jiqiang Liu, Xiangliang Zhang
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Android platform has dominated the markets of smart mobile devices in recent years. The number of Android applications (apps) has seen a massive surge. Unsurprisingly, Android platform has also become the primary target of attackers. The management of the explosively expansive app markets has thus become an important issue. On the one hand, it requires effectively detecting malicious applications (malapps) in order to keep the malapps out of the app market. On the other hand, it needs to automatically categorize a big number of benign apps so as to ease the management, such as correcting an app’s category falsely designated by the app developer. In this work, we propose a framework to effectively and efficiently manage a big app market in terms of detecting malapps and categorizing benign apps. We extract 11 types of static features from each app to characterize the behaviors of the app, and employ the ensemble of multiple classifiers, namely, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Naive Bayes (NB), Classification and Regression Tree (CART) and Random Forest (RF), to detect malapps and to categorize benign apps. An alarm will be triggered if an app is identified as malicious. Otherwise, the benign app will be identified as a specific category. We evaluate the framework on a large app set consisting of 107,327 benign apps as well as 8,701 malapps. The experimental results show that our method achieves the accuracy of 99.39% in the detection of malapps and achieves the best accuracy of 82.93% in the categorization of benign apps.