Published in

MDPI, Energies, 1(10), p. 39

DOI: 10.3390/en10010039

Links

Tools

Export citation

Search in Google Scholar

Sensor Fault Diagnosis for Aero Engine Based on Online Sequential Extreme Learning Machine with Memory Principle

Journal article published in 2017 by Junjie Lu, Jinquan Huang, Feng Lu ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The on-board sensor fault detection and isolation (FDI) system is essential to guarantee the reliability and safety of an aero engine. In this paper, a novel online sequential extreme learning machine with memory principle (MOS-ELM) is proposed for detecting, isolating, and reconstructing the fault sensor signal of aero engines. In many practical online applications, the sequentially coming data chunk usually possesses a characteristic of timeliness, and the overdue training data may mislead the subsequent learning process. The proposed MOS-ELM can improve the training process by introducing the concept of memory principle into the online sequential extreme learning machine (OS-ELM) to tackle the timeliness of the data chunk. Simulations on some time series problems and some benchmark databases show that MOS-ELM performs better in generalization performance, stability, and prediction accuracy than OS-ELM. The experiment results of the MOS-ELM-based sensor fault diagnosis system also verify the excellent generalization performance of MOS-ELM and indicate the effectiveness and feasibility of the developed diagnosis system.