Links

Tools

Export citation

Search in Google Scholar

Microshell Arrays Enhanced Sensitivity in Detection of Specific Antibody for Reduced Graphene Oxide Optical Sensor

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Protein-protein interactions play an important role in the investigation of biomolecules. In this paper, we reported on the use of a reduced graphene oxide microshell (RGOM)-based optical biosensor for the determination of goat anti-rabbit IgG. The biosensor was prepared through a self-assembly of monolayers of monodisperse polystyrene microspheres, combined with a high-temperature reduction, in order to decorate the RGOM with rabbit IgG. The periodic microshells allowed a simpler functionalization and modification of RGOM with bioreceptor units, than reduced graphene oxide (RGO). With additional antibody-antigen binding, the RGOM-based biosensor achieved better real-time and label-free detection. The RGOM-based biosensor presented a more satisfactory response to goat anti-rabbit IgG than the RGO-based biosensor. This method is promising for immobilizing biomolecules on graphene surfaces and for the fabrication of biosensors with enhanced sensitivity.