Published in

BioMed Central, Molecular Cancer, 1(16), 2017

DOI: 10.1186/s12943-017-0583-1

Links

Tools

Export citation

Search in Google Scholar

The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background With more than 600,000 mortalities each year, colorectal cancer (CRC) is the third most commonly diagnosed type of cancer worldwide. Recently, mechanisms involving noncoding RNAs have been implicated in the development of CRC. Methods We examined expression levels of lncRNA CRNDE and miR-181a-5p in 64 cases of CRC tissues and cell lines by qRT-PCR. Gain-of-function and loss-of-function assays were performed to examine the effect of CRNDE and miR-181a-5p on proliferation and chemoresistance of CRC cells. Using fluorescence reporter and western blot assays, we also explored the possible mechanisms of CRNDE in CRC cells. Results In this study, we found that the expression levels of the CRNDE were upregulated in CRC clinical tissue samples. We identified microRNA miR-181a-5p as an inhibitory target of CRNDE. Both CRNDE knockdown and miR-181a-5p overexpression in CRC cell lines led to inhibited cell proliferation and reduced chemoresistance. We also determined that β-catenin and TCF4 were inhibitory targets of miR-181a-5p, and that Wnt/β-catenin signaling was inhibited by both CRNDE knockdown and miR-181a-5p overexpression. Significantly, we found that the repression of cell proliferation, the reduction of chemoresistance, and the inhibition of Wnt/β-catenin signaling induced by CRNDE knockdown would require the increased expression of miR-181a-5p. Conclusions Our study demonstrated that the lncRNA CRNDE could regulate the progression and chemoresistance of CRC via modulating the expression levels of miR-181a-5p and the activity of Wnt/β-catenin signaling.