Links

Tools

Export citation

Search in Google Scholar

High Performance Software in Multidimensional Reduction Methods for Image Processing with Application to Ancient Manuscripts

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Multispectral imaging is an important technique for improving the readability of written or printed text where the letters have faded, either due to deliberate erasing or simply due to the ravages of time. Often the text can be read simply by looking at individual wavelengths, but in some cases the images need further enhancement to maximise the chances of reading the text. There are many possible enhancement techniques and this paper assesses and compares an extended set of dimensionality reduction methods for image processing. We assess 15 dimensionality reduction methods in two different manuscripts. This assessment was performed both subjectively by asking the opinions of scholars who were experts in the languages used in the manuscripts which of the techniques they preferred and also by using the Davies-Bouldin and Dunn indexes for assessing the quality of the resulted image clusters. We found that the Canonical Variates Analysis (CVA) method which was using a Matlab implementation and we have used previously to enhance multispectral images, it was indeed superior to all the other tested methods. However it is very likely that other approaches will be more suitable in specific circumstance so we would still recommend that a range of these techniques are tried. In particular, CVA is a supervised clustering technique so it requires considerably more user time and effort than a non-supervised technique such as the much more commonly used Principle Component Analysis Approach (PCA). If the results from PCA are adequate to allow a text to be read then the added effort required for CVA may not be justified. For the purposes of comparing the computational times and the image results, a CVA method is also implemented in C programming language and using the GNU (GNUs Not Unix) Scientific Library (GSL) and the OpenCV (OPEN source Computer Vision) computer vision programming library. ; Comment: 26 pages; University of Manchester, UK