Published in

BMJ Publishing Group, BMJ Open Sport and Exercise Medicine, 1(2), p. e000151, 2016

DOI: 10.1136/bmjsem-2016-000151

Links

Tools

Export citation

Search in Google Scholar

Exertional rhabdomyolysis: physiological response or manifestation of an underlying myopathy?

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Exertional rhabdomyolysis is characterised by muscle breakdown associated with strenuous exercise or normal exercise under extreme circumstances. Key features are severe muscle pain and sudden transient elevation of serum creatine kinase (CK) levels with or without associated myoglobinuria. Mild cases may remain unnoticed or undiagnosed. Exertional rhabdomyolysis is well described among athletes and military personnel, but may occur in anybody exposed to unaccustomed exercise. In contrast, exertional rhabdomyolysis may be the first manifestation of a genetic muscle disease that lowers the exercise threshold for developing muscle breakdown. Repeated episodes of exertional rhabdomyolysis should raise the suspicion of such an underlying disorder, in particular in individuals in whom the severity of the rhabdomyolysis episodes exceeds the expected response to the exercise performed. The present review aims to provide a practical guideline for the acute management and postepisode counselling of patients with exertional rhabdomyolysis, with a particular emphasis on when to suspect an underlying genetic disorder. The pathophysiology and its clinical features are reviewed, emphasising four main stepwise approaches: (1) the clinical significance of an acute episode, (2) risks of renal impairment, (3) clinical indicators of an underlying genetic disorders and (4) when and how to recommence sport activity following an acute episode of rhabdomyolysis. Genetic backgrounds that appear to be associated with both enhanced athletic performance and increased rhabdomyolysis risk are briefly reviewed.