Published in

Elsevier, Physica A: Statistical Mechanics and its Applications, (482), p. 524-531, 2017

DOI: 10.1016/j.physa.2017.04.088

Links

Tools

Export citation

Search in Google Scholar

Fast asynchronous updating algorithms for k-shell indices

Journal article published in 2016 by Yan-Li Lee, Tao Zhou
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Identifying influential nodes in networks is a significant and challenging task. Among many centrality indices, the $k$-shell index performs very well in finding out influential spreaders. However, the traditional method for calculating the $k$-shell indices of nodes needs the global topological information, which limits its applications in large-scale dynamically growing networks. Recently, L\@ü \emph{et al.} [Nature Communications 7 (2016) 10168] proposed a novel asynchronous algorithm to calculate the $k$-shell indices, which is suitable to deal with large-scale growing networks. In this paper, we propose two algorithms to select nodes and update their intermediate values towards the $k$-shell indices, which can help in accelerating the convergence of the calculation of $k$-shell indices. The former algorithm takes into account the degrees of nodes while the latter algorithm prefers to choose the node whose neighbors' values have been changed recently. We test these two methods on four real networks and three artificial networks. The results suggest that the two algorithms can respectively reduce the convergence time up to 75.4\% and 92.9\% in average, compared with the original asynchronous updating algorithm. ; Comment: 18 pages, 4 figures, 2 tables