Published in

BioMed Central, Arthritis Research and Therapy, 1(18)

DOI: 10.1186/s13075-016-1083-1

Links

Tools

Export citation

Search in Google Scholar

Suppression of the inflammatory response by disease-inducible interleukin-10 gene therapy in a three-dimensional micromass model of the human synovial membrane

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

BACKGROUND: Gene therapy has the potential to provide long-term production of therapeutic proteins in the joints of osteoarthritis (OA) patients. The objective of this study was to analyse the therapeutic potential of disease-inducible expression of anti-inflammatory interleukin-10 (IL-10) in the three-dimensional micromass model of the human synovial membrane. METHODS: Synovial tissue samples from OA patients were digested and the cells were mixed with Matrigel to obtain 3D micromasses. The CXCL10 promoter combined with the firefly luciferase reporter in a lentiviral vector was used to determine the response of the CXCL10 promoter to tumour necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta) and lipopolysaccharide (LPS). The effects of recombinant IL-10 on gene expression were determined by quantitative PCR. The production of IL-10 from the CXCL10p-IL10 vector and the effects on pro-inflammatory cytokine production were assessed by multiplex ELISA. RESULTS: Micromasses made from whole synovial membrane cell suspensions form a distinct surface composition containing macrophage and fibroblast-like synoviocytes thus mimicking the synovial lining. This lining can be transduced by lentiviruses and allow CXCL-10 promoter-regulated transgene expression. Adequate amounts of IL-10 transgene were produced after stimulation with pro-inflammatory factors able to reduce the production of synovial IL-1beta and IL-6. CONCLUSIONS: Synovial micromasses are a suitable model to test disease-regulated gene therapy approaches and the CXCL10p-IL10 vector might be a good candidate to decrease the inflammatory response implicated in the pathogenesis of OA.