Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 38(18), p. 26383-26390

DOI: 10.1039/c6cp04386k

Links

Tools

Export citation

Search in Google Scholar

The nature of resonance-assisted hydrogen bonds: a quantum chemical topology perspective

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Resonance Assisted Hydrogen Bonds (RAHBs) are particularly strong H-Bonds (HBs) which are relevant in several fields of chemistry. The traditional explanation for the occurrence of these HBs is built on mesomeric structures evocative of electron delocalisation in the system. Nonetheless, there are several theoretical studies which have found no evidence of such electron delocalisation. We considered the origin of RAHBs by employing Quantum Chemical Topology tools, more specifically, the Quantum Theory of Atoms in Molecules (QTAIM) and the Interacting Quantum Atoms energy partition. Our results indicate that the π-conjugated bonds allow for a larger adjustment of electron density throughout the H-bonded system as compared with non-conjugated carbonyl molecules. This rearrangement of charge distribution is a response to the electric field due to the H atom involved in the hydrogen bonding of the considered compounds. As opposed to the usual description of RAHB interactions, these HBs lead to a larger electron localisation in the system, and concomitantly to larger QTAIM charges which in turn lead to stronger electrostatic, polarization and charge transfer components of the interaction. Overall, the results presented here offer a new perspective on the cause of strengthening of these important interactions.