Dissemin is shutting down on January 1st, 2025

Published in

Cell Press, Neuron, 6(68), p. 1173-1186, 2010

DOI: 10.1016/j.neuron.2010.11.025

Links

Tools

Export citation

Search in Google Scholar

Functional organization of a neural network for aversive olfactory learning in Caenorhabditis elegans

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Many animals use their olfactory systems to learn to avoid dangers, but how neural circuits encode naïve and learned olfactory preferences, and switch between those preferences, is poorly understood. Here, we map an olfactory network, from sensory input to motor output, which regulates the learned olfactory aversion of Caenorhabditis elegans for the smell of pathogenic bacteria. Naïve animals prefer smells of pathogens but animals trained with pathogens lose this attraction. We find that two different neural circuits subserve these preferences, with one required for the naïve preference and the other specifically for the learned preference. Calcium imaging and behavioral analysis reveal that the naïve preference reflects the direct transduction of the activity of olfactory sensory neurons into motor response, whereas the learned preference involves modulations to signal transduction to downstream neurons to alter motor response. Thus, two different neural circuits regulate a behavioral switch between naïve and learned olfactory preferences.