Cell Press, Neuron, 6(68), p. 1173-1186, 2010
DOI: 10.1016/j.neuron.2010.11.025
Full text: Download
Many animals use their olfactory systems to learn to avoid dangers, but how neural circuits encode naïve and learned olfactory preferences, and switch between those preferences, is poorly understood. Here, we map an olfactory network, from sensory input to motor output, which regulates the learned olfactory aversion of Caenorhabditis elegans for the smell of pathogenic bacteria. Naïve animals prefer smells of pathogens but animals trained with pathogens lose this attraction. We find that two different neural circuits subserve these preferences, with one required for the naïve preference and the other specifically for the learned preference. Calcium imaging and behavioral analysis reveal that the naïve preference reflects the direct transduction of the activity of olfactory sensory neurons into motor response, whereas the learned preference involves modulations to signal transduction to downstream neurons to alter motor response. Thus, two different neural circuits regulate a behavioral switch between naïve and learned olfactory preferences.