Published in

American Chemical Society, Journal of Chemical Theory and Computation, 9(12), p. 4423-4429

DOI: 10.1021/acs.jctc.6b00417



Export citation

Search in Google Scholar

Multimodel Approach to the Optical Properties of Molecular Dyes in Solution

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO


We introduce a multimodel approach to the simulation of the optical properties of molecular dyes in solution, whereby the effects of thermal fluctuations and of dielectric screening on the absorption spectra are accounted for by explicit and implicit solvation models, respectively. Thermal effects are treated by averaging the spectra of molecular configurations generated, by an ab initio molecular-dynamics simulation where solvent molecules are treated explicitly. Dielectric effects are then dealt with implicitly by computing the spectra upon removal of the solvent molecules and their replacement with an effective medium, in the spirit of a continuum solvation model. Our multimodel approach is validated by comparing its, predictions with those of a fully explicit-solvation simulation for cyanidin-3-glucoside (cyanin) chromophore in water. While multimodel and fully explicit-solvent spectra may differ considerably for individual configurations along the trajectory, their time averages are remarkably similar, thus providing a solid benchmark of the former and allowing us to save considerably on the computer resources needed to predict accurate absorption spectra. The power of the proposed methodology is' finally demonstrated by the excellent agreement between its predictions and the absorption spectra of cyanin measured at strong and intermediate acidity conditions.