Published in

Wiley, Advanced Optical Materials, 1(5), p. 1600414, 2016

DOI: 10.1002/adom.201600414

Links

Tools

Export citation

Search in Google Scholar

Electrically Tunable Scattering from Devitrite-Liquid Crystal Hybrid Devices

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Devitrite is normally an unwanted crystalline impurity in the soda-lime-silica glass making process. Thin needles formed by heterogeneous nucleation of devitrite on the glass surface provide unique birefringence properties for potential applications in tunable optical devices. Here, devitrite and a liquid crystal are combined to create an electrically variable optical diffuser. The magnitude and scattering angle of the transmitted light propagating through the diffuser are tuned by varying the voltage between the graphene and indium tin oxide electrodes on either side of the liquid crystal. The threshold voltage to switch the transmitted light from a predominantly horizontal diffusion to a random order is 3.5 V. Angle-resolved measurements show broad diffusion angles of transmitted light with a maximum deflection of ±60°. The dynamically tunable devitrite-liquid crystal hybrid devices may advance the development of currently less viable technologies including beam shaping and automatic light transmission control. ; Other ; Leverhulme Trust, Royal Society, Engineering and Physical Sciences Research Council (IAA Follow on Fund)