Published in

American Institute of Mathematical Sciences, Kinetic and Related Models, 1(10), p. 61-91

DOI: 10.3934/krm.2017003

Links

Tools

Export citation

Search in Google Scholar

Weighted fast diffusion equations (Part II): Sharp asymptotic rates of convergence in relative error by entropy methods

Journal article published in 2016 by Matteo Bonforte, Jean Dolbeault ORCID, Matteo Muratori, Bruno Nazaret
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper is the second part of the study. In Part~I, self-similar solutions of a weighted fast diffusion equation (WFD) were related to optimal functions in a family of subcritical Caffarelli-Kohn-Nirenberg inequalities (CKN) applied to radially symmetric functions. For these inequalities, the linear instability (symmetry breaking) of the optimal radial solutions relies on the spectral properties of the linearized evolution operator. Symmetry breaking in (CKN) was also related to large-time asymptotics of (WFD), at formal level. A first purpose of Part~II is to give a rigorous justification of this point, that is, to determine the asymptotic rates of convergence of the solutions to (WFD) in the symmetry range of (CKN) as well as in the symmetry breaking range, and even in regimes beyond the supercritical exponent in (CKN). Global rates of convergence with respect to a free energy (or entropy) functional are also investigated, as well as uniform convergence to self-similar solutions in the strong sense of the relative error. Differences with large-time asymptotics of fast diffusion equations without weights will be emphasized.