Links

Tools

Export citation

Search in Google Scholar

Liver kinase B1 regulates hepatocellular tight junction distribution and function in vivo

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Liver kinase B1 (LKB1) and its downstream effector AMP‐activated protein kinase (AMPK) play critical roles in polarity establishment by regulating membrane trafficking and energy metabolism. In collagen sandwich‐cultured hepatocytes, loss of LKB1 or AMPK impaired apical ABCB11 (Bsep) trafficking and bile canalicular formation. In the present study, we used liver‐specific (albumin‐Cre) LKB1 knockout mice (LKB1−/−) to investigate the role of LKB1 in the maintenance of functional tight junction (TJ) in vivo. Transmission electron microscopy examination revealed that hepatocyte apical membrane with microvilli substantially extended into the basolateral domain of LKB1−/− livers. Immunofluorescence studies revealed that loss of LKB1 led to longer and wider canalicular structures correlating with mislocalization of the junctional protein, cingulin. To test junctional function, we used intravital microscopy to quantify the transport kinetics of 6‐carboxyfluorescein diacetate (6‐CFDA), which is processed in hepatocytes into its fluorescent derivative 6‐carboxyfluorescein (6‐CF) and secreted into the canaliculi. In LKB1−/− mice, 6‐CF remained largely in hepatocytes, canalicular secretion was delayed, and 6‐CF appeared in the blood. To test whether 6‐CF was transported through permeable TJ, we intravenously injected low molecular weight (3 kDa) dextran in combination with 6‐CFDA. In wild‐type mice, 3 kDa dextran remained in the vasculature, whereas it rapidly appeared in the abnormal bile canaliculi in LKB1−/− mice, confirming that junctional disruption resulted in paracellular exchange between the blood stream and the bile canaliculus. Conclusion: LKB1 plays a critical role in regulating the maintenance of TJ and paracellular permeability, which may explain how various drugs, chemicals, and metabolic states that inhibit the LKB1/AMPK pathway result in cholestasis. (Hepatology 2016;64:1317‐1329)