Published in

American Medical Association, Journal of the American Medical Association, 13(316), p. 1383

DOI: 10.1001/jama.2016.14568

Links

Tools

Export citation

Search in Google Scholar

Association Between Low-Density Lipoprotein Cholesterol–Lowering Genetic Variants and Risk of Type 2 Diabetes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Importance: Low-density lipoprotein cholesterol (LDL-C)-lowering alleles in or near NPC1L1 or HMGCR, encoding the respective molecular targets of ezetimibe and statins, have previously been used as proxies to study the efficacy of these lipid-lowering drugs. Alleles near HMGCR are associated with a higher risk of type 2 diabetes, similar to the increased incidence of new-onset diabetes associated with statin treatment in randomized clinical trials. It is unknown whether alleles near NPC1L1 are associated with the risk of type 2 diabetes. Objective: To investigate whether LDL-C-lowering alleles in or near NPC1L1 and other genes encoding current or prospective molecular targets of lipid-lowering therapy (ie, HMGCR, PCSK9, ABCG5/G8, LDLR) are associated with the risk of type 2 diabetes. Design, Setting, and Participants: The associations with type 2 diabetes and coronary artery disease of LDL-C-lowering genetic variants were investigated in meta-analyses of genetic association studies. Meta-analyses included 50???775 individuals with type 2 diabetes and 270???269 controls and 60???801 individuals with coronary artery disease and 123???504 controls. Data collection took place in Europe and the United States between 1991 and 2016. Exposures: Low-density lipoprotein cholesterol-lowering alleles in or near NPC1L1, HMGCR, PCSK9, ABCG5/G8, and LDLR. Main Outcomes and Measures: Odds ratios (ORs) for type 2 diabetes and coronary artery disease. Results: Low-density lipoprotein cholesterol-lowering genetic variants at NPC1L1 were inversely associated with coronary artery disease (OR for a genetically predicted 1-mmol/L [38.7-mg/dL] reduction in LDL-C of 0.61 [95% CI, 0.42-0.88]; P???=???.008) and directly associated with type 2 diabetes (OR for a genetically predicted 1-mmol/L reduction in LDL-C of 2.42 [95% CI, 1.70-3.43]; P?????.001). For PCSK9 genetic variants, the OR for type 2 diabetes per 1-mmol/L genetically predicted reduction in LDL-C was 1.19 (95% CI, 1.02-1.38; P???=???.03). For a given reduction in LDL-C, genetic variants were associated with a similar reduction in coronary artery disease risk (I2???=???0% for heterogeneity in genetic associations; P???=???.93). However, associations with type 2 diabetes were heterogeneous (I2???=???77.2%; P???=???.002), indicating gene-specific associations with metabolic risk of LDL-C-lowering alleles. Conclusions and Relevance: In this meta-analysis, exposure to LDL-C-lowering genetic variants in or near NPC1L1 and other genes was associated with a higher risk of type 2 diabetes. These data provide insights into potential adverse effects of LDL-C-lowering therapy.