4) BryoMFC manuscript - Carbo-paper water retention - Fig2i from Electrical output of bryophyte microbial fuel cell systems is sufficient to power a radio or an environmental sensor

Full text: Download

Publisher: Unknown publisher

Preprint: policy unknown. Upload

Postprint: policy unknown. Upload

Published version: policy unknown. Upload

Plant microbial fuel cells are a recently developed technology that exploits photosynthesis in vascular plants by harnessing solar energy and generating electrical power. In this study, the model moss species Physcomitrella patens , and other environmental samples of mosses, have been used to develop a non-vascular bryophyte microbial fuel cell (bryoMFC). A novel three-dimensional anodic matrix was successfully created and characterized and was further tested in a bryoMFC to determine the capacity of mosses to generate electrical power. The importance of anodophilic microorganisms in the bryoMFC was also determined. It was found that the non-sterile bryoMFCs operated with P. patens delivered over an order of magnitude higher peak power output (2.6 ± 0.6 µW m −2 ) than bryoMFCs kept in near-sterile conditions (0.2 ± 0.1 µW m −2 ). These results confirm the importance of the microbial populations for delivering electrons to the anode in a bryoMFC. When the bryoMFCs were operated with environmental samples of moss (non-sterile) the peak power output reached 6.7 ± 0.6 mW m −2 . The bryoMFCs operated with environmental samples of moss were able to power a commercial radio receiver or an environmental sensor (LCD desktop weather station).