Published in

SSRN Electronic Journal

DOI: 10.2139/ssrn.2854003

Links

Tools

Export citation

Search in Google Scholar

Generalization error minimization: a new approach to model evaluation and selection with an application to penalized regression

Journal article published in 2016 by Ning Xu, Jian Hong, Timothy C. G. Fisher
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We study model evaluation and model selection from the perspective of generalization ability (GA): the ability of a model to predict outcomes in new samples from the same population. We believe that GA is one way formally to address concerns about the external validity of a model. The GA of a model estimated on a sample can be measured by its empirical out-of-sample errors, called the generalization errors (GE). We derive upper bounds for the GE, which depend on sample sizes, model complexity and the distribution of the loss function. The upper bounds can be used to evaluate the GA of a model, ex ante. We propose using generalization error minimization (GEM) as a framework for model selection. Using GEM, we are able to unify a big class of penalized regression estimators, including lasso, ridge and bridge, under the same set of assumptions. We establish finite-sample and asymptotic properties (including $\mathcal{L}_2$-consistency) of the GEM estimator for both the $n ⩾ p$ and the $n