Published in

Elsevier, Theoretical Computer Science, (664), p. 12-28, 2017

DOI: 10.1016/j.tcs.2016.04.025

Links

Tools

Export citation

Search in Google Scholar

Sparse decomposition by iterating Lipschitzian-type mappings

Journal article published in 2016 by Alessandro Adamo, Giuliano Grossi, Raffaella Lanzarotti ORCID, Jianyi Lin ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

combines nonconvex Lipschitzian-type mappings with canonical orthogonal projectors. The former are aimed at uniformly enhancing the sparsity level by shrinkage effects, the latter are used to project back onto the space of feasible solutions. The iterative process is driven by an increasing sequence of a scalar parameter that mainly contributes to approach the sparsest solutions. It is shown that the minima are locally asymptotically stable for a specific smooth . ℓ0-norm. Furthermore, it is shown that the points yielded by this iterative strategy are related to the optimal solutions measured in terms of a suitable smooth . ℓ1-norm. Numerical simulations on phase transition show that the performances of the proposed technique overcome those yielded by well known methods for sparse recovery.