Links

Tools

Export citation

Search in Google Scholar

Roles of surfactants and particle shape in the enhanced thermal conductivity of TiO2 nanofluids

Journal article published in 2016 by Liu Yang, Xielei Chen, Mengkai Xu, Kai Du
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Although several forms of thermal conductivity models for nanofluid have been established, few models for nanofluids containing surfactants or columnar nanoparticles are found. This paper intends to consider the surfactants and particle shape effect in the thermal conductivity of TiO2 nanofluids. The thermal conductivity models for respectively spherical and columnar TiO2 nanofluids are proposed by considering the influences of solvation nanolayer and the end effect of columnar nanoparticles. The thicknesses of the solvation nanolayers are defined by the surfactant molecular length and a few atomic distances for nanofluid with and without surfactant respectively. The end effect of the columnar nanoparticles is considered by analyzing the different thermal resistances and probability of the heat conduction for the selected small element in axial direction and radial direction. Finally, the present models and some other existing models were compared with some available experimental data and the comparison results show the present models achieve higher accuracy and precision for all the four kinds of applications.