Links

Tools

Export citation

Search in Google Scholar

Better Security for Functional Encryption for Inner Product Evaluations

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Functional encryption is a new public key paradigm that solves, in a non-interactive way, most of the security challenges raised by cloud computing. A recent paper by Abdalla, Bourse, De Caro, and Pointcheval shows a functional encryption scheme for evaluations of inner products whose security can be proven under simple assumptions. Inner product evaluation is a simple, but quite powerful functionality, that suffices for many concrete applications. We analyze the different security notions for functional encryption for inner product evaluation and propose a new generic construction that achieves security against adaptive adversaries. We show 3 instantiations based on the ElGamal encryption (plain DDH assumption), Paillier/BCP encryption (DCR assumption), and Regev encryption (LWE assumption). All of them have different advantages and drawbacks, but with acceptable trade-offs, and rely on standard assumptions.