Links

Tools

Export citation

Search in Google Scholar

Relaxation dynamics in a Fe7 nanomagnet

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

We investigate the phonon-induced relaxation dynamics in the Fe7 magnetic molecule, which is made of two Fe3+ triangles bridged together by a central Fe3+ ion. The competition between different antiferromagnetic exchange interactions leads to a low-spin ground state multiplet with a complex pattern of low-lying excited levels. We theoretically investigate the decay of the time correlation function of molecular observables, such as the cluster magnetization, due to the spin-phonon interaction. We find that more than one time contributes to the decay of the molecular magnetization. The relaxation dynamics is probed by measurements of the nuclear spin-lattice relaxation rate 1/T1. The interpretation of these measurements allows the determination of the magnetoelastic coupling strength and to set the scale factor of the relaxation dynamics time scales. In our theoretical interpretation of 1/T1 data we also take into account the wipeout effect at low temperatures.