Dissemin is shutting down on January 1st, 2025

Published in

American Meteorological Society, Journal of Atmospheric and Oceanic Technology, 5(33), p. 919-936, 2016

DOI: 10.1175/jtech-d-15-0219.1

Links

Tools

Export citation

Search in Google Scholar

Calibration and validation of HY-2 altimeter wave height

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractHai Yang-2 (HY-2) satellite altimeter measurements of significant wave height () are analyzed over the period from 1 October 2011 to 6 December 2014. They are calibrated and validated against in situ buoys and other concurrently operating altimeters: Jason-2, CryoSat-2, and Satellite with Argos and ALtiKa (SARAL). In general, the HY-2 altimeter measurements agree well with buoy measurements, with a bias of −0.22 m and a root-mean-square error (RMSE) of 0.30 m. When the reduced major axis (RMA) regression procedure was applied to the entire period, the RMSE was reduced by 33% to 0.2 m. A further comparison with other satellite altimeters, however, revealed two additional features of HY-2 estimates over this period. First, a noticeable mismatch is present between HY-2 and the other satellite altimeters for high seas ( > 6 m). Second, a jump increase in HY-2 values was detected starting in April 2013, which was associated with the switch to backup status of the HY-2 sensors and the subsequent update of its data processing software. Although reported by previous studies, these two deficiencies had not been accounted for in calibrations. Therefore, the HY-2 wave height records are now subdivided into two phases (time periods pre- and post-April 2013) and a two-branched calibration is proposed for each phase. These revised calibrations, validated throughout the range of significant wave heights of 1–9 m, are expected to improve the practical applicability of HY-2 measurements significantly.