Published in

World Scientific Publishing, International Journal of Modern Physics A, 01(27), p. 1250003

DOI: 10.1142/s0217751x12500030

Links

Tools

Export citation

Search in Google Scholar

Flavor and Spin Dependent Structure of the Nucleon and Meson

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We employ the polarized chiral constituent quarks to extract the polarized structure function of the nucleon. The polarized valon model is used to calculate the spin dependence of parton distribution functions of meson. The connection between the polarized structure of the proton and the Goldstone bosons, using the chiral quark model (χQM) is analyzed and the spin dependence of the parton distribution functions for pion and kaon, is obtained thoroughly. These functions are evolved to high Q2 values, using the singlet, nonsinglet and quark–gluon moments (ΔMS, ΔMNS, ΔMgq) which are convoluted with the polarized valon distributions. The polarized valon distributions for meson are computed, based on a phenomenological method and a comparison between polarized and unpolarized parton distribution functions for pion and kaon are performed. As a consequence of the χQM, the SU (3)f symmetry breaking for the spin dependent of the nucleon sea distributions is achieved. The required polarized parton distributions of the proton will be obtained from the parton distribution functions of the polarized meson via the related convolution integral which are existed in the χQM. Following that the analytical result for the proton's spin structure function, [Formula: see text], is obtained and compared with experimental data. Finally, the parton orbital angular momentum of meson are introduced and the total spin of the meson, based on this quantity and the first moment of distributions for gluon and singlet sectors, are obtained.