Published in

American Association of Immunologists, The Journal of Immunology, 12(191), p. 5925-5932, 2013

DOI: 10.4049/jimmunol.1202254

Links

Tools

Export citation

Search in Google Scholar

Genome-wide regulatory analysis reveals that T-bet controls Th17 lineage differentiation through direct suppression of IRF4.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The complex relationship between Th1 and Th17 cells is incompletely understood. The transcription factor T-bet is best known as the master regulator of Th1 lineage commitment. However, attention is now focused on the repression of alternate T cell subsets mediated by T-bet, particularly the Th17 lineage. It has recently been suggested that pathogenic Th17 cells express T-bet and are dependent on IL-23. However, T-bet has previously been shown to be a negative regulator of Th17 cells. We have taken an unbiased approach to determine the functional impact of T-bet on Th17 lineage commitment. Genome-wide analysis of functional T-bet binding sites provides an improved understanding of the transcriptional regulation mediated by T-bet, and suggests novel mechanisms by which T-bet regulates T helper cell differentiation. Specifically, we show that T-bet negatively regulates Th17 lineage commitment via direct repression of the transcription factor interferon regulatory factor-4 (IRF4). An in vivo analysis of the pathogenicity of T-bet deficient T cells demonstrated that mucosal Th17 responses were augmented in the absence of T-bet, and we have demonstrated that the role of T-bet in enforcing Th1 responses and suppressing Th17 responses are separable. The interaction of the two key transcription factors T-bet and IRF4 during the determination of T cell fate choice significantly advances our understanding of the mechanisms underlying the development of pathogenic T cells.