Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical Review A, 6(74), 2006

DOI: 10.1103/physreva.74.063420

Links

Tools

Export citation

Search in Google Scholar

Nonlinear magneto-optical rotation with modulated light in tilted magnetic fields

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Larmor precession of laser-polarized atoms contained in anti-relaxation-coated cells, detected via nonlinear magneto-optical rotation (NMOR) is a promising technique for a new generation of ultra-sensitive atomic magnetometers. For magnetic fields directed along the light propagation direction, resonances in NMOR appear when linearly polarized light is frequency- or amplitude-modulated at twice the Larmor frequency. Because the frequency of these resonances depends on the magnitude but not the direction of the field, they are useful for scalar magnetometry. New NMOR resonances at the Larmor frequency appear when the magnetic field is tilted away from the light propagation direction in the plane defined by the light propagation and polarization vectors. These new resonances, studied both experimentally and with a density matrix calculation in the present work, offer a convenient method for NMOR-based vector magnetometry. Comment: Submitted to Phys. Rev. A, 6 pages, 9 figures