American Physical Society, Physical Review A, 6(74), 2006
DOI: 10.1103/physreva.74.063420
Full text: Download
Larmor precession of laser-polarized atoms contained in anti-relaxation-coated cells, detected via nonlinear magneto-optical rotation (NMOR) is a promising technique for a new generation of ultra-sensitive atomic magnetometers. For magnetic fields directed along the light propagation direction, resonances in NMOR appear when linearly polarized light is frequency- or amplitude-modulated at twice the Larmor frequency. Because the frequency of these resonances depends on the magnitude but not the direction of the field, they are useful for scalar magnetometry. New NMOR resonances at the Larmor frequency appear when the magnetic field is tilted away from the light propagation direction in the plane defined by the light propagation and polarization vectors. These new resonances, studied both experimentally and with a density matrix calculation in the present work, offer a convenient method for NMOR-based vector magnetometry. Comment: Submitted to Phys. Rev. A, 6 pages, 9 figures