Elsevier, American Journal of Orthodontics and Dentofacial Orthopedics, 4(138), p. 451-457, 2010
DOI: 10.1016/j.ajodo.2009.05.022
Full text: Unavailable
Introduction: There are no reports on the aging effects of thermocycling of nickel-titanium (NiTi) based coil springs, and few studies have investigated their superelasticity phases in full. In this study, we compared the mechanical properties of NiTi-based closed-coil springs after the combined aging effects of prolonged strain and thermocycling, as a reflection of the clinical situation. METHODS: Ninety NiTi-based closed-coil springs were used, 30 each of the following types: (1) Nitinol (3M Unitek, Monrovia, Calif), (2) Ni-Ti (Ormco, Glendora, Calif), and (3) RMO (Rocky Mountain Orthodontics, Denver, Colo); all had similar dimensions (length, 12 mm). In each sample group, 2 equal subgroups of 15 coil springs were extended by either 50% (to 18 mm) or 150% (to 30 mm), immersed in artificial saliva, and kept at 37°C for 45 days. All springs underwent sessions of 1000 thermocycles (1 minute long) from 5°C to 55°C on days 22 and 45. Unload deflection curves from both the 50% and 150% ext