Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Paleobiology, 3(41), p. 491-501, 2015

DOI: 10.1017/pab.2015.12

Links

Tools

Export citation

Search in Google Scholar

Phanerozoic trends in brachiopod body size from synoptic data

Journal article published in 2015 by Zixiang Zhang, Michael Augustin, Jonathan L. Payne ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractBody size is one of the most studied phenotypic attributes because it is biologically important and easily measured. Despite a long history of study, however, the pattern of body-size change in diverse higher taxa over the Phanerozoic remains largely unknown because few relevant data sets span more than a single geological period or provide comprehensive, global coverage. In this study, we measured representative specimens of 3414 brachiopod genera illustrated in theTreatise on Invertebrate Paleontology. We applied these size data to stage-resolved stratigraphic ranges from theTreatiseand the Paleobiology Database to develop a Phanerozoic record of trends in brachiopod size. Using a model comparison approach, we find that temporal variation in brachiopod size exhibits two distinct modes—a Paleozoic mode of size increase and a post-Paleozoic mode indistinguishable from a random walk. This transition reflects a change in the identities of the most diverse brachiopod orders rather than a shift in mode within any given order. Paleozoic size increase reflects a small, persistent bias toward the origination of new genera larger than those surviving from the previous stage and is identifiable as a statistically supported trend in three orders representing both Class Strophomenata (Order Productida) and Class Rhynchonellata (orders Atrypida and Spiriferida). Extinction exhibits no consistent bias with respect to size. The shift in evolutionary mode across the end-Permian mass extinction adds to long-standing evidence from studies of diversity and abundance that this biotic catastrophe suddenly and permanently altered the evolutionary history of what was, until that time, the most diverse animal phylum on Earth.