Published in

Springer Nature [academic journals on nature.com], Pharmacogenomics Journal, 1(13), p. 44-51, 2011

DOI: 10.1038/tpj.2011.40

Links

Tools

Export citation

Search in Google Scholar

CYP4A11 variant is associated with high density lipoprotein cholesterol in women

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The ω-hydroxylase CYP4A11 catalyzes the transformation of epoxyeicosatrienoic acids (EETs) to ω-hydroxylated EETs, endogenous peroxisome proliferator-activated receptor-α (PPARα) agonists. PPARα activation increases high-density lipoprotein cholesterol (HDL-C). A cytosine-for-thymidine (T8590C) variant of CYP4A11 encodes for an ω-hydroxylase with reduced activity. This study examined the relationship between CYP4A11 T8590C genotype and metabolic parameters in the Framingham Offspring Study and in a clinical practice-based biobank, BioVU. In women in the Framingham Offspring Study, the CYP4A11 8590C allele was associated with reduced HDL-C concentrations (52.1±0.5 mg dl(-1) in CYP4A11 CC- or CT-genotype women versus 54.8±0.5 mg dl(-1) in TT women at visit 2, P=0.02), and with an increased prevalence of low HDL-C, defined categorically as 50 mg dl(-1) (odds ratio 1.39 (95% CI 1.02-1.90), P=0.04). In the BioVU cohort, the CYP4A11 8590C allele was also associated with low HDL-C in women (odds ratio 1.69 (95% CI 1.03-2.77, P=0.04)). There was no relationship between genotype and HDL-C in men in either cohort.The Pharmacogenomics Journal advance online publication, 13 September 2011; doi:10.1038/tpj.2011.40.