Published in

Volume 6: Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy; Honors and Awards

DOI: 10.1115/gt2015-43391

Links

Tools

Export citation

Search in Google Scholar

Optically Accessible Multisector Combustor: Application and Challenges of Laser Techniques at Realistic Operating Conditions

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

For their application in a multisector combustor, several laser-based measurement techniques underwent further development to generate useful results in the demanding environment of highly luminous flames under elevated pressures. The techniques were applied to two burner configurations and the results were used to explain their respective behavior. Multisector combustors at elevated pressure present formidable difficulties to the operation of laser based techniques, as the optical path length is longer than for a single sector while the optical density of the flowing medium can be quite high. Hence, the techniques have to be set up to perform under low signal to noise levels. Nevertheless for a validation exercise geared at multidimensional simulation, quantitative results are requested. Here the modification of standard Laser Induced Incandescence as a means to measure soot concentrations with higher dynamic range is described. For situations where the optical density is too high for the application of imaging techniques, laser absorption was used and its application in the multisector combustor is presented. Since combustion and soot formation is closely coupled to flowfield and mixing, velocity measurements are highly desired for comparison with computed flowfields. Although with Laser-Doppler Anemometry a well-established technique is at hand, the high operating costs of a multisector combustor cannot be supported for the needed time of operation. Therefore an effort was made to make the Particle Imaging Velocimetry technique operable in highly luminous flames by using a second camera. The two-camera system and its operation are described in the paper. Finally the application on two different burner configurations is reported together with chemiluminescence as a tracer for heat release, and differences in soot production are related to the measured flow field.