Published in

American Society of Mechanical Engineers, Journal of Engineering Materials and Technology, 1(138), p. 011003

DOI: 10.1115/1.4031615

Links

Tools

Export citation

Search in Google Scholar

Comparison of Static and Dynamic Powder Compaction: Experiment and Simulation

Journal article published in 2015 by C. A. Braun, M. Schumaker, J. Rice, J. P. Borg
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, the static and dynamic compaction response of a six-material mixture, containing both brittle and ductile constituents, is compared. Quasi-static and dynamic compaction experiments were conducted on samples and the results compared to simulations. Optical analyses of compacted samples indicate that dynamically compacting samples to near 300 m/s is not sufficient for complete compaction or localized grain melt. Simulations indicate that a wide distribution of temperature and stress states are achieved in the dynamically compacted samples; compaction speeds should be increased to near 800 m/s at which point copper grains achieve melt temperatures on their surfaces. The experimental data is used to fit a bulk P-α equation of state (EOS) that can be used for simulating large-scale dynamic compaction for industrial applications.