Published in

Elsevier, Bioresource Technology, (139), p. 181-189, 2013

DOI: 10.1016/j.biortech.2013.04.044

Links

Tools

Export citation

Search in Google Scholar

Experimental evidences for a new model in the description of the adsorption-coupled reduction of Cr(VI) by protonated banana skin

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This work reports experimental evidences, not previously considered, to evaluate the Cr(VI) removal by protonated banana skin biomass. Variations in the number of hydroxyl groups, quantified by potentiometric titrations, and CO2 evolution during experiments, were attributed mainly to the oxidation of hydroxylic entities present in the studied material. The results indicate that these groups together with the carboxylic moieties are the main functionalities involved on the adsorption-coupled reduction process. The column experiment carried out provides a new approach to obtain the maximum reduction capacity of the material (3.72 mmol g−1). Moreover, we hereby propose a model that reports the first evidence for the instant bound of Cr(III) species to the material used, formed after the reduction of Cr(VI) present in solution. The removal process was quantified carrying out experiments under various pHs, biomass doses and Cr(VI) concentrations, and the mechanism underlying chromium removal was identified.