Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Quaternary Research, 3(49), p. 271-279

DOI: 10.1006/qres.1998.1968

Links

Tools

Export citation

Search in Google Scholar

Multiple Sources for Sea-Rafted Loisels Pumice, New Zealand

Journal article published in 1998 by Phil Shane ORCID, Paul Froggatt, Ian Smith, Murray Gregory
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sea-rafted Loisels Pumice is one of the few stratigraphic markers used to correlate late Holocene coastal deposits in New Zealand. Along with underlying sea-rafted products of the local Taupo eruption of ca. 1800 yr B.P., these events have been used to bracket the first arrival of humans at New Zealand. Loisels Pumice is dacitic to rhyolitic (SiO2 63–78 wt%) in composition, but individual clasts are homogeneous (SiO2 range ± 1 wt%). Characteristics include very low K2O (0.5–1.75 wt%) and Rb (<25 ppm) and a mineralogy dominated by calcic and mafic xenocrysts. Similar features are shared by pumices of the Tonga–Kermadec arc, suggesting a common tholeiitic oceanic source. Interclast diversity of Loisels Pumice suggests that it is the product of several eruptive events from different volcanoes. The differences in glass and mineral compositions found at various sites can be explained if the deposits are from different events. A multisource origin can also partially explain the discrepancy in reported 14C ages (ca. 1500–600 yr B.P.) from different localities. Therefore, the value of Loisels Pumice as a stratigraphic marker is questionable, and it does not constrain the arrival of humans. The predominant westward drift of historic Tonga–Kermadec arc pumices and prevailing ocean currents suggest a long anticlockwise semicircular transport route into the Tasman Sea before sea-rafted pumice arrival in New Zealand. The diversity of the pumices indicates that silicic eruptions frequently occur from the predominantly basic oceanic volcanoes.