Published in

Springer, Numerische Mathematik, 2(100), p. 211-232, 2005

DOI: 10.1007/s00211-005-0599-0

Links

Tools

Export citation

Search in Google Scholar

Long-time averaging for integrable Hamiltonian dynamics

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Given a Hamiltonian dynamics, we address the question of computing the space-average (referred as the ensemble average in the field of molecular simulation) of an observable through the limit of its time-average. For a completely integrable system, it is known that ergodicity can be characterized by a diophantine condition on its frequencies and that the two averages then coincide. In this paper, we show that we can improve the rate of convergence upon using a filter function in the time-averages. We then show that this convergence persists when a numerical symplectic scheme is applied to the system, up to the order of the integrator.