Published in

Trans Tech Publications, Applied Mechanics and Materials, (378), p. 91-96, 2013

DOI: 10.4028/www.scientific.net/amm.378.91

Links

Tools

Export citation

Search in Google Scholar

A Multibody Dynamical Model for Full Hole Drillstring Dynamics

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The research on drillstring dynamics is necessary for improving drilling efficiency and safety. In this investigation, a multibody dynamical model for 3D full hole drillstring system is presented based on the Absolute Nodal Coordinate Formulation (ANCF). The drillstring is modeled with the ANCF beam element. The absolute nodal coordinate formulation of the beam element as well as the boundary conditions at the top-drive and drill-bit, and the contact/friction model between drillstring and wellbore are also investigated. The dynamic governing equation for full hole drillstring system is given and solved by the backward differentiation formulation (BDF) for differential algebraic equations (DAEs). The developed multibody dynamic solver is capable of analyzing full coupled vibration for the full hole drillstring system. It can play a certain role in drillstring dynamics researches and engineering applications.