American Society for Microbiology, Journal of Virology, 13(77), p. 7563-7574, 2003
DOI: 10.1128/jvi.77.13.7563-7574.2003
Full text: Download
ABSTRACT Human cytomegalovirus (CMV) infection initiates in mucosal epithelia and disseminates via leukocytes throughout the body. Langerhans cells (LCs), the immature dendritic cells (DCs) that reside in epithelial tissues, are among the first cells to encounter virus and may play important roles in the immune response, as well as in pathogenesis as hosts for viral replication and as vehicles for dissemination. Here, we demonstrate that CD34 + progenitor cell-derived LC-type DCs exhibit a differentiation state-dependent susceptibility to CMV infection. In contrast to the small percentage (3 to 4%) of the immature LCs that supported infection, a high percentage (48 to 74%) of mature, LC-derived DCs were susceptible to infection with endotheliotropic strains (TB40/E or VHL/E) of CMV. These cells were much less susceptible to viral strains AD169 var ATCC, Towne var RIT 3 , and Toledo. When exposed to endotheliotropic strains, viral gene expression (IE1/IE2 and other viral gene products) and viral replication proceeded efficiently in LC-derived mature DCs (mDCs). Productive infection was associated with downmodulation of cell surface CD83, CD1a, CD80, CD86, ICAM-1, major histocompatibility complex (MHC) class I, and MHC class II on these cells. In addition, the T-cell proliferative response to allogeneic LC-derived mDCs was attenuated when CMV-infected cultures were used as stimulators. This investigation revealed important characteristics of the interaction between CMV and the LC lineage of DCs, suggesting that LC-derived mDCs are important to viral pathogenesis and immunity through their increased susceptibility to virus replication and virus-mediated immune escape.