Published in

American Chemical Society, Journal of Physical Chemistry C, 49(119), p. 27354-27362, 2015

DOI: 10.1021/acs.jpcc.5b02854

Links

Tools

Export citation

Search in Google Scholar

Bimodal Acidity at the Amorphous Silica/Water Interface

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Understanding the microscopic origin of the acid base behavior of mineral surfaces in contact with water is still a challenging task, for both the experimental and the theoretical communities. Even for a relatively simple material, such as silica, the origin of the bimodal acidity behavior is still a debated topic. In this contribution we calculate the acidity of single sites on the humid silica surface represented by a model for the hydroxylated amorphous surface. Using a thermodynamic integration approach based on ab initio molecular dynamics, we identify two different acidity values. In particular, some convex geminals and some type of vicinals are very acidic (pK(a) = 2.9 and 2.1, respectively) thanks to a special stabilization of their deprotonated forms. This recalls the behavior of the out-of-plane silanols on the crystalline (0001) alpha-quartz surface, although the acidity here is even stronger. On the contrary, the concave geminals and the isolated groups present a quite high pK(a) (8.9 and 10.3, respectively), similar to the one of silicic acid in liquid water.