Published in

Oxford University Press, Stem Cells, 2(29), p. 332-343, 2011

DOI: 10.1002/stem.577

Links

Tools

Export citation

Search in Google Scholar

The Rho Kinase Pathway Regulates Mouse Adult Neural Precursor Cell Migration

Journal article published in 2011 by Soo Yuen Leong, Clare H. Faux, Alisa Turbic, Kirsty J. Dixon, Ann M. Turnley ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Adult neural precursor cells (NPCs) in the subventricular zone (SVZ) normally migrate via the rostral migratory stream (RMS) to the olfactory bulb (OB). Following neural injury, they also migrate to the site of damage. This study investigated the role of Rho-dependent kinase (ROCK) on the migration of NPCs in vitro and in vivo. In vitro, using neurospheres or SVZ explants, inhibition of ROCK using Y27632 promoted cell body elongation, process protrusion, and migration, while inhibiting NPC chain formation. It had no effect on proliferation, apoptosis, or differentiation. Both isoforms of ROCK were involved. Using siRNA, knockdown of both ROCK1 and ROCK2 was required to promote NPC migration and morphological changes; knockdown of ROCK2 alone was partially effective, with little/no effect of knockdown of ROCK1 alone. In vivo, infusion of Y27632 plus Bromodeoxyuridine (BrdU) into the lateral ventricle for 1 week reduced the number of BrdU-labeled NPCs in the OB compared with BrdU infusion alone. However, ROCK inhibition did not affect the tangential-to-radial switch of NPC migration, as labeled cells were present in all OB layers. The decrease in NPC number at the OB was not attributed to a decrease in NPCs at the SVZ. However, ROCK inhibition decreased the density of BrdU-labeled cells in the RMS and increased the distribution of these cells to ectopic brain regions, such as the accessory olfactory nucleus, where the majority differentiated into neurons. These findings suggest that ROCK signaling regulates NPC migration via regulation of cell-cell contact and chain migration.