Published in

Nature Research, Nature Medicine, 9(18), p. 1350-1358, 2012

DOI: 10.1038/nm.2882

Links

Tools

Export citation

Search in Google Scholar

A PML-PPARδ pathway for fatty acid oxidation regulates haematopoietic stem cell maintenance

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Stem cell function is an exquisitely regulated process. To date, however, the contribution of metabolic cues to stem cell function is poorly understood. Here we identify a novel PML - Peroxisome-proliferator activated receptor delta (PPARδ) - fatty acid oxidation (FAO) pathway for haematopoietic stem cell (HSC) maintenance. We have found that loss of Ppard profoundly affects the maintenance of HSCs. Moreover, treatment with PPARδ agonists improves these HSC functions, whereas, conversely, inhibition of mitochondrial FAO induces loss of the HSC compartment. Importantly, we demonstrate that PML exerts its essential role in HSC maintenance through regulation of PPAR signalling and FAO. Mechanistically, the PML-PPARδ-FAO pathway controls HSC asymmetric division. Depletion of Ppard or Pml, as well as FAO inhibition, results in symmetric commitment of HSC daughter cells while, conversely, PPARδ activation increases asymmetric division. Thus, our findings identify a new metabolic switch for the control of HSC cell fate with important therapeutic implications.