Published in

American Chemical Society, Journal of the American Chemical Society, 17(131), p. 6149-6153, 2009

DOI: 10.1021/ja807551e

Links

Tools

Export citation

Search in Google Scholar

NativeEscherichia coliSufA, Coexpressed with SufBCDSE, Purifies as a [2Fe−2S] Protein and Acts as an Fe−S Transporter to Fe−S Target Enzymes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Iron sulfur (Fe-S) clusters are versatile biological cofactors that require biosynthetic systems in vivo to be assembled. In Escherichia coli the Isc (iscRSUA-hscBA-fdx-iscX) and the Suf (sufABCDSE) pathways fulfill this function. Despite extensive biochemical and genetic analysis of both pathways, the physiological function of the A-type proteins of each pathway (IscA and SufA) is still unclear. Studies conducted in vitro suggest two possible functions for A-type proteins, as Fe-S scaffold/transfer proteins or as iron donors during cluster assembly. To resolve this issue, SufA was co-expressed in vivo with its cognate partner proteins from the suf operon, SufBCDSE. Native SufA purified anaerobically using this approach was unambiguously demonstrated to be a [2Fe-2S] protein by biochemical analysis and UV-Visible, Mössbauer, resonance Raman, and EPR spectroscopy. Furthermore, native [2Fe-2S] SufA can transfer its Fe-S cluster to both [2Fe-2S] and [4Fe-4S] apoproteins. These results clearly show that A-type proteins form Fe-S clusters in vivo and are competent to function as Fe-S transfer proteins as purified. This study resolves the contradictory results from previous in vitro studies and demonstrates the critical importance of providing in vivo partner proteins during protein over-expression to allow correct biochemical maturation of metalloproteins.