Published in

Wiley, Integrated Environmental Assessment and Management, 2(10), p. 197-209, 2014

DOI: 10.1002/ieam.1508

Links

Tools

Export citation

Search in Google Scholar

Passive sampling methods for contaminated sediments: Scientific rationale supporting use of freely dissolved concentrations

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Passive sampling methods (PSMs) allow the quantification of the freely dissolved concentration (Cfree ) of an organic contaminant even in complex matrices such as sediments. Cfree is directly related to a contaminant's chemical activity, which drives spontaneous processes including diffusive uptake into benthic organisms and exchange with the overlying water column. Consequently, Cfree provides a more relevant dose metric than total sediment concentration. Recent developments in PSMs have significantly improved our ability to reliably measure even very low levels of Cfree . Application of PSMs in sediments is preferably conducted in the equilibrium regime, where freely dissolved concentrations in the sediment are well-linked to the measured concentration in the sampler via analyte-specific partition ratios. The equilibrium condition can then be assured by measuring a time series or a single time point using passive samplers with different surface to volume ratios. Sampling in the kinetic regime is also possible and generally involves the application of performance reference compounds for the calibration. Based on previous research on hydrophobic organic contaminants, it is concluded that Cfree allows a direct assessment of 1) contaminant exchange and equilibrium status between sediment and overlying water, 2) benthic bioaccumulation, and 3) potential toxicity to benthic organisms. Thus, the use of PSMs to measure Cfree provides an improved basis for the mechanistic understanding of fate and transport processes in sediments and has the potential to significantly improve risk assessment and management of contaminated sediments. Integr Environ Assess Manag 2014;10:197-209. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC.